
LECTURE 2: INTRODUCTION TO THE FUTURE OF DEVELOPMENT

AI Assisted Programming Course
Duration: 60 minutes

LEARNING OBJECTIVES

Understand the concept of AI-assisted programming

Explore current AI tools for developers

Analyze the impact on productivity and code quality

Examine real-world adoption statistics

Discuss benefits and challenges

Look ahead to the future of programming

WHAT IS AI-ASSISTED PROGRAMMING?

AI-Assisted Programming is the use of artificial intelligence tools to:
Generate code automatically

Complete code as you type

Suggest improvements and optimizations

Debug and fix errors

Translate between programming languages

Generate documentation and tests

AI PROGRAMMING WORKFLOW

👨‍💻 Developer

🤖 AI Tool 💡 Suggestion
✅ Accept

❌ Reject

🚀 Faster Development

MARKET ADOPTION (2024)

92%
of developers use AI tools

46%
productivity improvement

70%
faster code completion

25%
reduction in bugs

Sources: Stack Overflow Developer Survey 2024, GitHub Research

POPULAR AI PROGRAMMING TOOLS
Tool Company Primary Feature Languages

GitHub Copilot Microsoft/GitHub Code completion 40+ languages

ChatGPT/GPT-4 OpenAI Code generation All major languages

Claude Anthropic Code analysis All major languages

Tabnine Tabnine AI completion 30+ languages

AI DEVELOPMENT ECOSYSTEM

Developer

Code Completion

AI Assistants

Code Review

Documentation

AI Tools Support Every Development Stage

GITHUB COPILOT

The most widely adopted AI programming assistant
Trained on billions of lines of public code

Integrated directly into IDEs (VS Code, JetBrains, etc.)

Real-time code suggestions

Context-aware completions

Chat interface for code explanation

"

COPILOT CAPABILITIES

✅ STRENGTHS

Fast code completion

Understands context

Learns from comments

Multiple suggestions

Wide language support

⚠️ LIMITATIONS

May suggest incorrect code

Requires code review

Limited business logic

Potential licensing issues

Internet dependency

OUR LAB ENVIRONMENT: GITHUB CODESPACES

A cloud-based development environment fully configured for our course.
Instant Setup: Click "Open in Codespace" and you're ready to go.

Pre-installed Tools: Comes with Python, Jupyter, and all necessary extensions.

Integrated Copilot: GitHub Copilot is built-in and ready to assist.

Consistent Environment: Everyone has the exact same setup, eliminating "it works on my
machine" issues.

Codespaces provides a managed, on-demand development environment, allowing you
to focus on learning, not on setup.

COMPLETING LABS WITH COPILOT

Follow these steps to complete your first lab:
1. Open the lab by creating a new **Codespace**.
2. Navigate to the lab file (e.g., `setup_lab.py`).
3. Read the `TODO` comments to understand the task.
4. Use **Copilot's suggestions** to help you write the code.
5. **Test your code** using the provided test block.
6. Commit and push your changes to GitHub.

LAB 1: STRUCTURE OVERVIEW

Your first lab will guide you through several common programming tasks with AI
assistance.

setup lab py

Task 1: Greeting Function Task 2: Statistics Function Task 3: Calculator Class Task 4: Sorting Algorithms Task 5: Search Algorithms Task 6: Data Structure Task 7: Benchmarking

Use the Mermaid diagram to visualize the tasks in the lab file.

LATEST GITHUB COPILOT UPDATES (2025)

Exciting new features and improvements released in September 2025
🚀 MAJOR MODEL UPDATES

GPT-5 & GPT-5 mini - Generally available with enhanced code generation

Claude Opus 4.1 - In public preview with improved reasoning

Gemini 2.5 Pro - Available for advanced code analysis

Grok Code Fast 1 - Rolling out for faster completions

NEW FEATURES & CAPABILITIES

🤖 AI MODEL SELECTION

Auto model selection in VS Code

GPT-4.1 for code completion

Context-aware model switching

Performance optimization

🔧 DEVELOPER TOOLS

Generated commit messages

Read-only Sparks sharing

Controlled data access

Enhanced chat interface

INTEGRATION & ECOSYSTEM

GitHub MCP Registry enables seamless integration with external tools and services
Raycast integration for productivity

VS Code v1.104 with Copilot improvements

Enhanced plugin ecosystem

Better team collaboration features

IMPACT ON DEVELOPMENT WORKFLOW

EXPECTED IMPROVEMENTS (2025)

Code Quality: 30% improvement

Development Speed: 40% faster

Debugging Time: 35% reduction

Learning Curve: 50% reduction

Code Review: 25% faster

Documentation: 45% improvement
Projected based on new model capabilities and features

LIVE DEMO: AI CODE GENERATION

// Comment: Create a function to calculate fibonacci numbers

function fibonacci(n) {

 if (n <= 1) return n;

 return fibonacci(n - 1) + fibonacci(n - 2);

}

// Comment: Create an optimized version with memoization

function fibonacciMemo(n, memo = {}) {

 if (n in memo) return memo[n];

 if (n <= 1) return n;

 memo[n] = fibonacciMemo(n - 1, memo) + fibonacciMemo(n - 2, memo);

 return memo[n];

}

// Comment: Generate test cases

console.log(fibonacci(10)); // Expected: 55

console.log(fibonacciMemo(50)); // Much faster for large numbers

Example of AI-generated code with improvements

PRODUCTIVITY IMPACT

DEVELOPER TASK TIME REDUCTION

Code writing: 55% faster

Bug fixing: 37% faster

Code review: 30% faster

Documentation: 60% faster
Testing: 45% faster

Refactoring: 40% faster

Learning new APIs: 65% faster
Debugging: 35% faster

Source: GitHub Copilot Research Study 2024

KEY BENEFITS

🚀 FOR DEVELOPERS

Faster coding and reduced boilerplate

Learning new languages and frameworks

Reduced context switching

Enhanced creativity and problem-solving

🏢 FOR ORGANIZATIONS

Increased development velocity

Reduced time-to-market

Lower training costs

Improved code consistency

CHALLENGES & CONSIDERATIONS

⚠️ TECHNICAL CHALLENGES

Code quality and correctness

Security vulnerabilities

Over-reliance on AI suggestions

Debugging AI-generated code

🔒 ETHICAL & LEGAL

Code ownership and licensing

Privacy and data security

Bias in AI models

Impact on developer skills

BEST PRACTICES

Always review AI-generated code
Write clear comments to guide AI suggestions

Test thoroughly - AI code may have subtle bugs

Understand the code before accepting suggestions

BEST PRACTICES (CONTINUED)

Use AI as a tool, not a replacement for thinking

Stay updated on security and licensing implications

Maintain coding skills alongside AI usage

Consider team consistency in AI tool usage

FUTURE: EMERGING TRENDS

More specialized AI models for specific domains

Better integration with development workflows

AI-powered code review and testing

Natural language to code translation

Automated refactoring and optimization

FUTURE: IMPACT ON DEVELOPERS

Focus shifts to higher-level problem solving

Increased importance of code review skills

Need for AI literacy in development

Emphasis on creative and architectural thinking

Continuous learning becomes more critical

THIS COURSE PREVIEW

UPCOMING LECTURES:

Code Generation & Completion

Code Review & QA

Testing & Debugging

Documentation

WHAT YOU'LL LEARN:

Hands-on tool usage

Best practices

Real-world applications

Ethical considerations

QUESTIONS & DISCUSSION

What questions do you have about AI-assisted programming?
DISCUSSION TOPICS:

Have you used AI programming tools before?

What concerns do you have about AI in development?

Which tools are you most excited to learn about?

THANK YOU!
INTRODUCTION TO AI-ASSISTED PROGRAMMING
← Back to Module Index
← Previous Lecture: Module Introduction

Speaker notes

file:///home/runner/work/AIAP-lecture-slides/AIAP-lecture-slides/
file:///home/runner/work/AIAP-lecture-slides/AIAP-lecture-slides/lectures/lecture1-module-introduction.html

