
FROM VAGUE ASKS TO REPRODUCIBLE RESULTS

WHAT YOU'LL LEARN TODAY

A mental model for how prompting works
A simple recipe for writing good prompts

How to ask clarifying questions before coding

Setting clear constraints and non-goals
Advanced techniques like Persona Pattern and Chain-of-Thought

Professional approaches: Tests-first, patch/diff style, and repo context

Understanding instruction hierarchy and AI limitations

BAD WAY TO ASK AI FOR HELP

"WRITE A PYTHON FUNCTION"

😕

Confused AI

?
?

?
Messy
Wrong

Confusing

WHY THIS IS BAD:

AI doesn't know what you really want

You get random, unhelpful code

Takes forever to fix

GOOD WAY TO ASK AI FOR HELP

😊

Happy AI

Clear
Correct
Useful

"Write a Python function that adds two numbers.

Call it 'add_numbers'.

It should take two numbers and return their sum.

Include a simple example of how to use it."

WHY THIS WORKS BETTER:

AI knows exactly what you want

You get helpful, working code

Saves you time!

MENTAL MODEL: FOCUSING THE AI

PROMPT QUALITY DETERMINES OUTPUT FOCUS

AI generates code based on patterns it has seen

A vague prompt gives it too many possibilities

A good prompt narrows the possibilities to what you want

This reduces errors and "hallucinations"

Good Prompt

Focused Output

Bad Prompt

Random Output Wrong Output

Think of it like giving directions: "Go to the city" vs. "Go to 221B Baker Street, London".

A clear prompt acts like a funnel, guiding the AI to the correct result.

SIMPLE RECIPE FOR GOOD PROMPTS

1. What do you
want?

2. What language
or tool?

3. Give an
example

4. How should
it look?

Great Code!
✓ Works correctly

✓ Easy to understand

Follow these 4 steps and you'll get much better help from AI!

LET'S SEE THIS RECIPE IN ACTION

TASK: CREATE A SIMPLE CALCULATOR

❌ BAD PROMPT: ✅ GOOD PROMPT:

"Make a calculator" "Create a Python function called 'calculate'

that can add, subtract, multiply, and divide

two numbers.

For example: calculate(5, 3, '+') should return 8

Make it return the result as a number."

See how the good prompt follows our 4-step recipe?

LET'S PRACTICE TOGETHER!

YOUR TURN: WRITE A GOOD PROMPT

You want AI to help you create a program that asks someone their name and says hello
to them.

THINK ABOUT OUR 4 STEPS:

1. What do you want? (A greeting program)

2. What language? (Python)

3. Give an example (Input: "Alice", Output: "Hello Alice!")

4. How should it look? (Simple and easy to read)

Take 2 minutes: Write your prompt with a partner!

HERE'S ONE GOOD EXAMPLE

"Write a Python program that asks the user to type their name,

then prints a friendly greeting.

For example:

- If the user types 'Alice', it should print 'Hello Alice!'

- If the user types 'Bob', it should print 'Hello Bob!'

Make the code simple and add comments to explain what it does."

WHY THIS WORKS:

✅ Clear goal (greeting program)

✅ Specific language (Python)

✅ Good examples (Alice, Bob)

✅ Clear format (simple + comments)

CONSTRAINTS: WHAT YOU MUST FOLLOW

Remember our 4-step recipe? After clarifying what you want, specify the rules and
boundaries AI must respect.

WHY CONSTRAINTS MATTER:

Clear boundaries help AI focus its suggestions within your project's requirements. Think
of it as giving AI the "rules of the game."

✅ COMMON CONSTRAINT CATEGORIES

Tech Stack: Python 3.11, Node 20, React
18

Code Style: ESLint rules, Prettier
formatting

Performance: Under 200ms response
time

Security: No eval(), validate all inputs

Compatibility: No breaking changes to
API

Testing: Must include unit tests

EXAMPLE WITH CONSTRAINTS:

Task: Add email validation to user registration

Constraints:

- Use existing Joi validation library

- Return 400 status with clear error message

- Must work with current Express middleware

- Follow existing error handling pattern

NON-GOALS: WHAT YOU SHOULD AVOID

Just as important as saying what to do: explicitly state what NOT to do. This prevents
scope creep and unwanted changes.

WHY NON-GOALS MATTER:

AI might suggest "helpful" extras that break your system. Non-goals act like a fence to
keep solutions focused and safe.

❌ COMMON NON-GOAL CATEGORIES

No DB changes: Keep existing schema

No new dependencies: Use current
libraries

No framework upgrades: Stay on current
version

No UI changes: Backend-only
modifications

No major refactors: Minimal, focused
changes

No auth changes: Keep existing security
model

EXAMPLE WITH NON-GOALS:

Task: Add email validation to user registration

Non-Goals:

- Don't modify the database schema

- Don't change frontend validation logic

- Don't add new npm dependencies

- Don't alter the existing user model

POPULAR PROMPTING FRAMEWORKS

Professional developers use these memorable acronyms:

⭐ STAR METHOD

Situation: Context and background

Task: What you want to accomplish

Action: Specific steps to take

Result: Expected outcome format

🎯 CLEAR FRAMEWORK

Context: Provide background info

Length: Specify output length

Examples: Give sample inputs/outputs

Audience: Who will use this?

Role: What expert should AI be?

🚀 CREATE METHOD

Character: AI's role/persona

Request: Clear task description

Examples: Sample inputs/outputs

🏗️ SPEC (OUR FRAMEWORK)

Specific goal: What you want

Programming language/tool

Example: Sample input/output

Adjustments: Refinements needed

Type: Format of response

Extras: Additional requirements

Constraints: How it should look

Pro tip: Pick one framework and stick with it to build consistency!

CLARIFYING QUESTIONS

Ask before you code when goals or constraints are ambiguous.

USEFUL STEMS

"What are the acceptance criteria for this change?"

"Which interfaces or files must stay backward compatible?"

"Any non-goals I should explicitly avoid?"

"What deadline and scope do we have?"

"Should I prefer a minimal diff or a refactor?"

QUICK TEMPLATE

Before I start, a couple of quick checks:

- Goal and success criteria?

- Constraints (APIs, style, frameworks)?

- Non-goals / out of scope?

- Preferred output (diff, file, snippet)?

- Any tests, data, or secrets to use/avoid?

THE PERSONA PATTERN

Tell the AI to act as an expert with a specific role.
❌ GENERIC PROMPT

AI gives: "Looks okay."
❌ Basic, unhelpful feedback.

✅ WITH PERSONA PATTERN

AI gives: "Found a potential SQL injection vulnerability..."
✅ Expert-level, actionable advice!

"Review my Python code for errors."

"Act as a senior Python developer and a security expert.

Review my Python code.

Look for subtle bugs, performance issues, and security vulnerabilities.

Explain your findings with code examples."

Why it works: You focus the AI on a specific knowledge set, unlocking more detailed and
relevant insights.

CHAIN-OF-THOUGHT PROMPTING

Make AI show its "thinking" process step-by-step
❌ WITHOUT CHAIN-OF-THOUGHT

AI might give: "The answer is 5"
❌ No explanation, hard to verify, might be wrong

✅ WITH CHAIN-OF-THOUGHT

"Solve this Python problem:

Find the second largest number in [3, 1, 4, 1, 5, 9]"

"Solve this Python problem step by step:

Find the second largest number in [3, 1, 4, 1, 5, 9]

Think through it:

1. First, what's the process?

2. Show your work

3. Then give the final answer"

AI gives: "1. Remove duplicates: [3,1,4,5,9]
2. Sort: [1,3,4,5,9]
3. Second largest: 5"
✅ Clear reasoning, easy to check!

Magic phrases: "Think step by step", "Show your work", "Explain your reasoning"

FEW-SHOT VS. ZERO-SHOT

Giving the AI examples vs. no examples
❌ ZERO-SHOT (NO EXAMPLES)

AI might give: "Appleay"
❌ Correct, but maybe not the format you want.

✅ FEW-SHOT (WITH EXAMPLES)

AI gives: "appleay"
✅ Follows your exact format!

"Convert 'apple' to pig latin."

"Convert words to pig latin.

'banana' -> 'ananabay'

'hello' -> 'ellohay'

'apple' -> ?"

Pro tip: Use few-shot prompting when you need a very specific output format or style.

INSTRUCTION HIERARCHY

Rule of Thumb When instructions conflict, follow the highest-priority source.

Repo-level guidance (e.g., .github/copilot-instructions.md, path rules) →
highest priority

File-level constraints (existing code style, framework conventions)

Explicit prompt/task text (what you ask the model to do)

Inline comments and local context

Model defaults and general knowledge → lowest priority

Example: "For lectures/**/*.html, keep Reveal.js structure and
Reveal.initialize intact." If a prompt asks to overhaul the deck framework,
decline or propose a safe alternative.

AI LIMITATIONS & GOTCHAS

What AI can't do (yet) - stay alert for these!
🚫 CURRENT LIMITATIONS ⚠️ WATCH OUT FOR

No real-time data: Training cutoff dates

Can't run/test code: Logical errors slip
through

No project context: Doesn't know your
full codebase

Security blind spots: May suggest
vulnerable patterns

Overconfident: Sounds sure even when
wrong

Hallucinated APIs: Invents non-existent
functions

Outdated syntax: Uses old language
versions

Copy-paste traps: Code that "looks
right" but isn't

Cargo cult programming: Complex
solutions to simple problems

Missing edge cases: Happy path only

✅ YOUR DEFENSE STRATEGY

Always test the code AI gives you

Ask for explanations when something seems complex

Cross-check documentation for API calls

Start simple, then add complexity

Remember: You're still the programmer!

TESTS-FIRST PROMPTING

Write or provide tests first; have the model implement only what’s needed to pass.
EXAMPLE TEST (JS)

PROMPT

// email.spec.js

import { isValidEmail } from './email.js'

test('valid emails', () => {

 expect(isValidEmail('a@b.com')).toBe(true)

})

test('invalid emails', () => {

 expect(isValidEmail('not-an-email')).toBe(false)

})

Implement only the code needed to make these tests pass.

Return a single file:

email.js

 with a named export

isValidEmail

MINIMAL SOLUTION

.

No extra commentary.

// email.js

export function isValidEmail(s) {

 return /^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(s)

}

PATCH/DIFF STYLE CHANGES

Ask for unified diffs to keep reviews tight and auditable.

Tip: For multi-file edits, ask for one diff per file, clearly separated.

diff --git a/utils/math.js b/utils/math.js

index e69de29..4b825dc 100644

--- a/utils/math.js

+++ b/utils/math.js

@@

-export function add(a,b){return a+b}

+export function add(a, b) {

+ if (typeof a !== 'number' || typeof b !== 'number') {

+ throw new TypeError('add expects numbers')

+ }

+ return a + b

+}

REPO CONTEXT & COPILOT INSTRUCTIONS

Give the model concrete paths and rules so outputs align with your project.

INCLUDE CONTEXT

Context:

- Follow

.github/instructions/lectures.instructions.md

- Keep

Reveal.initialize

 block and slide sizing intact

- Edit only:

lectures/lecture3-prompting-for-programmers.html

Task:

BENEFITS

Reduces back-and-forth and rework

Matches repository style and constraints

Safer, smaller diffs that are easy to review

Plays nicely with CI and automation

Speaker notes

